skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shadura, Oksana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    The large data volumes expected from the High Luminosity LHC (HL-LHC) present challenges to existing paradigms and facilities for end-user data analysis. Modern cyberinfrastructure tools provide a diverse set of services that can be composed into a system that provides physicists with powerful tools that give them straightforward access to large computing resources, with low barriers to entry. The Coffea-Casa analysis facility (AF) provides an environment for end users enabling the execution of increasingly complex analyses such as those demonstrated by the Analysis Grand Challenge (AGC) and capturing the features that physicists will need for the HL-LHC. We describe the development progress of the Coffea-Casa facility featuring its modularity while demonstrating the ability to port and customize the facility software stack to other locations. The facility also facilitates the support of batch systems while staying Kubernetes-native. We present the evolved architecture of the facility, such as the integration of advanced data delivery services (e.g. ServiceX) and making data caching services (e.g. XCache) available to end users of the facility. We also highlight the composability of modern cyberinfrastructure tools. To enable machine learning pipelines at coffee-casa analysis facilities, a set of industry ML solutions adopted for HEP columnar analysis were integrated on top of existing facility services. These services also feature transparent access for user workflows to GPUs available at a facility via inference servers while using Kubernetes as enabling technology. 
    more » « less
  2. Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A. (Ed.)
    Data analysis in HEP has often relied on batch systems and event loops; users are given a non-interactive interface to computing resources and consider data event-by-event. The “Coffea-casa” prototype analysis facility is an effort to provide users with alternate mechanisms to access computing resources and enable new programming paradigms. Instead of the command-line interface and asynchronous batch access, a notebook-based web interface and interactive computing is provided. Instead of writing event loops, the columnbased Coffea library is used. In this paper, we describe the architectural components of the facility, the services offered to end users, and how it integrates into a larger ecosystem for data access and authentication. 
    more » « less
  3. Abstract The long-term sustainability of the high-energy physics (HEP) research software ecosystem is essential to the field. With new facilities and upgrades coming online throughout the 2020s, this will only become increasingly important. Meeting the sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g., Unix, version control, C++, and continuous integration). The second is knowledge of domain-specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving specialized techniques, including parallel programming, machine learning and data science tools, and techniques to maintain software projects at all scales. This paper discusses the collective software training program in HEP led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients for the solution of HEP computing challenges. Beyond serving the community by ensuring that members are able to pursue research goals, the program serves individuals by providing intellectual capital and transferable skills important to careers in the realm of software and computing, inside or outside HEP. 
    more » « less